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Robust Spectrum Sensing for Noncircular Signal in
Multiantenna Cognitive Receivers
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Abstract—Although noncircular (NC) signals are frequently en-
countered in wireless communications, their statistical property
has not yet been utilized in state-of-the-art methods for spectrum
sensing. In this paper, a variant of Hadamard (HDM) ratio test
is devised to exploit the NC property of the primary signals for
spectrum sensing, which is named the NC-HDM algorithm. As the
NC-HDM approach is able to exploit full statistical property of the
NC signals and handle deviations from independent and identi-
cally distributed (IID) noise, it is superior to the state-of-the-art al-
gorithms in detection accuracy and/or robustness. Moreover, per-
formance analysis is conducted for the NC-HDM approach, in-
cluding the invariant property, false-alarm probability and detec-
tion probability. That is, employing the moment-matching Box’s
Chi-square approximation, the false-alarm probability can be de-
termined. Since the exact moments of the NC-HDM test statistic
under the signal-absence hypothesis can be determined and all mo-
ments have been matched, the derived false-alarm probability is
very accurate, leading to simple and precise computation of the
theoretical decision threshold. On the other hand, as the first two
exact moments of the NC-HDM test statistic under the signal-pres-
ence hypothesis can be precisely calculated, the detection prob-
ability based on moment-matching Beta approximation is quite
accurate. Numerical results are included to demonstrate the su-
periority of the NC-HDM approach and validate our theoretical
calculations.

Index Terms—Beta distribution, generalized likelihood ratio
test, multiple antenna, noncircular, spectrum sensing.

I. INTRODUCTION

S a fundamental element in cognitive radio (CR) [1]-[3],

spectrum sensing has received much attention in the lit-
erature. Up to now, numerous methodologies have been de-
vised for spectrum sensing, including energy detection (ED),
feature detection and correlation-structure detection algorithms.
With the known noise variance, it is proved that the ED method
[4], [5] is optimal for independent and identically distributed
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(IID) observations. Nevertheless, its optimality cannot be guar-
anteed for the situation of unknown noise variance because it
is rather sensitive to the noise uncertainty, particularly for the
non-IID noise. As a non-blind approach, the feature detector
[6]-[8] needs to employ some a priori knowledge of the signal
or channel to construct its test statistic. Although the feature de-
tection approach is robust against the non-IID noise and pro-
vides superior detection performance, it usually suffers from
synchronization errors and frequency offsets in practical situ-
ations, thereby limiting its applications. Indeed, the presence
of primary signals not only changes the energy in the observa-
tion data but the correlation structure as well. The correlation
structure inherent in the observation covariance matrix leads to
the most spread-out eigen-spectrum, providing a good indica-
tion for the primary signals. In addition, unlike the ED and fea-
ture detection schemes, the eigenvalue-based approach is free
of the noise variance and signal features, thereby being a blind
detector. As a result, the eigenvalue-based spectrum sensing ap-
proaches have received much attention [9]-[14]. As a variant of
the generalized likelihood ratio test (GLRT), the spherical test
(ST) detector [15] is able to reliably identify the correlated sig-
nals embedded in additive IID noise. In fact, the ST detector
is equivalent to the eigenvalue arithmetic-to-geometric mean
(AGM) algorithm [16]. Nevertheless, it is shown in [17] that,
as the locally most powerful invariant test for sphericity, John’s
detector [18] is superior to the ST detector when the numbers
of antennas and samples tend to infinity at the same rate. As a
matter of fact, the spectrum sensing algorithms above are de-
veloped upon the IID noise assumption and thereby not robust
against deviations from the IID noise, which is quite relevant
in the real-world applications since the multiantenna cognitive
receiver is typically uncalibrated. Even though the receiver can
be calibrated, the calibration error makes the thermal noise to be
non-ideal IID to some extent, which poses a big challenge for
practical spectrum sensing.

Various approaches have been suggested for robust spec-
trum sensing in the literature, such as the GLRT test [19],
independence test [20], Hadamard (HDM) ratio test [21], [22],
Gerschgorin disk test [23], locally most powerful invariant test
(LMPIT) [24], [25], volume-based test [26], [27] and stochastic
learning strategy [28]. Due to its robustness against the non-I1ID
noise and its root in the GLRT paradigm, the HDM approach
[29]-31] has received much attention in the community of
spectrum sensing, such as [21], [22]. In the HDM approach,
spectrum sensing is cast as the problem of distinguishing be-
tween a diagonal matrix and its general Hermitian alternative.
A variant of the HDM approach for spectrum sensing has been
proposed in [21], where the number of primary users (PUs)
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is assumed to be known a priori to the receiver. On the other
hand, the performance of the HDM algorithm for spectrum
sensing has been analyzed in [19], [20]. In fact, as pointed out
in [26], although the HDM test is robust against the non-1ID
noise, its detection performance can be further enhanced.

Note that the HDM test considers the deviation from the IID
noise but implicitly utilizes the circularity of the primary sig-
nals. However, not all digital modulation schemes produce the
circular signals. As a matter of fact, the noncircular (NC) signals
are frequently encountered in wireless communication systems,
such as the binary phase shift keying (BPSK), offset quaternary
phase shift (QPSK), pulse amplitude modulation (PAM), min-
imum shift keying (GMSK), Gaussian MSK, and baseband or-
thogonal frequency division multiplexing (OFDM) [32]-[36].
As defined in [37], a complex-valued random vector is non-
circular provided that it has a non-zero complementary covari-
ance matrix. In the presence of NC primary signals, the standard
HDM test only employs the usual covariance matrix for spec-
trum sensing but ignores the complementary covariance matrix,
thereby being unable to utilize the complete statistical property
of the NC primary signals. To achieve the optimal detection
performance, the spectrum sensing methodologies rely on not
only the usual covariance matrix but also the complementary co-
variance matrix. Basically, the information in the complemen-
tary covariance matrix can be accessed by employing widely
linear (WL) or conjugate-linear transformation. The methods
for spectrum sensing can considerably improve in detection per-
formance provided that the whole statistical properties of the
primary signals can be adopted.

In this paper, we reformulate the HDM test by using the
WL transformations and considering the unknown non-IID
noises, ending up with an accurate and robust NC-based
Hadamard (NC-HDM) ratio test. Moreover, the performance
of the NC-HDM approach is analyzed, including the verifi-
cation of the invariant property as well as derivations of the
false-alarm and detection probabilities. In particularly, the
false-alarm probability is determined by employing the mo-
ment-based Box’s approximation. Since the exact moments of
the NC-HDM test statistic under the signal-absence hypothesis
can be obtained and all the moments can be matched, the
derived false-alarm probability is very accurate, leading to
simple and precise computation of the theoretical decision
threshold. On the other hand, as the first two exact moments of
the NC-HDM test statistic under the signal-presence hypothesis
can be precisely calculated, the derived detection probability
based on moment-matching Beta approximation is quite accu-
rate. This enables us to precisely evaluate the performance of
the NC-HDM approach.

The remainder of the paper is organized as follows. Section I1
presents the problem formulation, including the noncircularity,
signal model as well as HDM test. The NC-HDM algorithm
is developed in Section III. Performance analysis of the
NC-HDM method is conducted in Section IV. Simulation
results are presented in Section V. Finally, conclusions are
drawn in Section VI.

Throughout this paper, we use boldface uppercase letter for
matrix, boldface lowercase letter for column vector or collec-
tion, and lowercase letter for scalar quantity. Superscripts *
and H represent transpose and conjugate transpose, respectively.
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The E[a] and G denote the expected value and estimate of a, re-
spectively. The |A| and tr(A) are the determinant and trace of
A, respectively. The x ~ A (g, R) means x follows a com-
plex Gaussian distribution with mean g and covariance ma-
trix R, and ~ signifies “distributed as”. The Wy (N, R) and
CWi (N, R) represent the real and complex Wishart distribu-
tions with /V degrees of freedom (DOFs) and associated covari-
ance matrix R, respectively. The a;; stands for the (4, j)-th el-
ement of A and A > B means that A — B is a positive definite
matrix. The diag( - ) stands for a diagonal matrix and I,; repre-
sents the M x M identity matrix.

II. PROBLEM FORMULATION

A. Non-Circularity

For a zero-mean Gaussian random vector x, its usual covari-
ance matrix is defined as R :~E[xxH] and complementary co-
variance matrix is defined as R = £ [XX~T]. The random vector
x is circular if R = 0 and noncircular if R # 0. For a zero-mean
noncircular Gaussian random vector, not only R but also R are
needed to completely characterize its statistical behavior.

B. Signal Model

Consider a cognitive MIMO network in which a secondary
user (SU) with M antennas is attempting to sense the signals
emitted by ¢ PUs with a single antenna. The output of the SU,
under binary hypotheses, can be written as

Ho

i (1)

_jm
x= { Hu +n,
where H,, stands for the signal-absence hypothesis, 1 denotes
the signal-presence hypothesis, H € C**¢ corresponds to the
MIMO channels between the PUs and SU, which is unknown
deterministic during the sensing period. Moreover,

X=[r1,...,20m]" )
u=[ug,...uy]" 3)
n=[ng,... nyl" @)
stand for the observation, signal and noise vectors, respectively.
It is assumed that u;(i = 1,...,q) is noncircular and Gaussian

distributed, i.e., u; ~ N(0, 0,,,) with 0, = F[|u;|?] being the
unknown power of u; and E[u?] = k;e'?i0,, withe = /1,
¢; € [—m,m) being the noncircularity phase and x; € [0,1]
being the noncircularity rate. Moreover, assume that the noise
is circular and Gaussian distributed, i.e., E[n?] = 0 and n; ~
N(0,0,,) (i=1,...,M) where 0,, = E[|n;|?] is the un-
known noise variance. Note that o,,, is not necessarily equal
to oy,; for ¢ # j in practice, which corresponds to the case
of uncalibrated receiver. In addition, the noises are assumed
to be statistically independent of each other and also indepen-
dent of the signals. The spectrum sensing issue at hand is to
decide whether the primary signals exist or not from the noisy
observations X = [x3, - - -, X ] with N denoting the number of
samples.

C. HDM Test
For non-IID noise situations, the observation vector is
Gaussian distributed, i.e.,

x|H; ~ N(0,R®),i =0,1 (5)
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where R(U) é diag(anl, vy Onyy ) and R(l) é (7'f,',j)jijj\,j
which is non-diagonal and positive definite. According to the
GLRT principle, that is, calculating the maximum likelihood
(ML) estimates of R(*) under the binary hypotheses and sub-
stituting the so-obtained ML estimates into the likelihood ratio
formula, the HDM test is

S| "o
§apm = —37— Z YHDM (6)
Hq',:l Sig Ha

where 8 = (1/N)XXH, s;;(i = 1,..., M) is the diagonal
element of S and vygpy is the decision threshold of the HDM
scheme. The HDM test was first proposed in [29] for mul-
tivariate statistical analysis, then reformulated for Gaussian
signal detection in the community of array processing [30],
[31] and recently exploited for spectrum sensing [19]-[21].
Although the Hadamard ratio approach is robust against the
deviation from the IID noise, it only utilizes the usual co-
variance matrix for detecting the presence of primary signals,
ignoring the complementary covariance matrix. As a result,
the HDM approach is unable to employ the whole statistical
characterization of complex-valued data for spectrum sensing.
This eventually leads to the sub-optimal detection performance
in the NC primary signal scenarios.

III. PROPOSED NC-HDM TEST

It is desired to develop a robust detection approach for spec-
trum sensing, which is able to employ the complete statistical
characterization of the complex-valued observation data. For
the NC Gaussian signals, not only the usual covariance ma-
trix but also the complementary covariance matrix are required
to completely characterize the statistical behavior of the com-
plex-valued data. To guarantee the robustness and accuracy in
spectrum sensing, the NC-HDM detection algorithm is devised
in this subsection. In particular, let x = [x*, x"]T be the aug-
mented observation vector. It follows from [36] that the proba-
bility density function (PDF) of x is

B 1 1 go1
f(&)—mexp{§§ R X} (7)

where R is the augmented covariance matrix, given as

R = E[xx"] = [é{* Il;{*} € C2Mx2M ®)

IfR=0,xis circular; otherwise, it is noncircular. For R #0,
the primary signals can be the BPSK, offset QPSK and baseband
OFDM which are of the NC property. The sensing problem can
be formulated as the following hypothesis test:

Ho:R=0,R =diag(o,,,....0n,) 9)
Hi: R #0,R #diag(on,,....0n,) (10)

It is easy to obtain the likelihood function under hypothesis
Hi(i = 1,2) as

£X79) = (RO e (5 (RO'W) )

TABLE I
PROPOSED NC-HDM ALGORITHM

Step 1:
Step 2:

Compute the augmented SCM by W = Z,Ig\j:1 gtgi{.
Construct the test statistic

1
|W|z
[T, wis
Determine the presence or not of the primary signals by com-
paring Enc.upm With the predetermined threshold ync.ppm. If

ENC-HDM > YNC-HDM, the signal is absent; otherwise, the signal
is present.

SNC—HDM =

Step 3:

where the constant term has been dropped for simplicity and W
is the augmented sample covariance matrix (SCM), computed
as

W W
[W* W } = (wij)amxan-  (12)

According to the GLRT principle, the test statistic can be ex-
pressed as

supgo L£(X[Ho)

T=—c—. 13
supgm L(X[H1) (13)

By setting the derivative of logarithm of (13) with respect
to E(L) to zero, we obtain that the ML estimates of E(l)
- (1

is E() = (1/N)W, and the ML estimate of RO s
NG

E( ) = (1/N)diag(w11, - .., warar, W11, -« -, Waras ). Substi-
tuting the ML estimates into (13), we obtain the GLRT test
statistic as

; W|3
Enc-mpm = TV = |M;| (14)

[Ty wii
Let ync_gapmM be the decision threshold of the NC-HDM
method. The null hypothesis Hg is rejected if éxc_upm 1S

smaller than yxc_pgpar; otherwise, the alternative hypothesis
'H; is rejected. That is

Ho
ENC_HDM Z YNC_HDM-
Hy

(15)
The NC-HDM sensing algorithm is summarized in Table 1.

IV. PERFORMANCE ANALYSIS

In this section, the performance analysis is conducted for the
proposed NC-HMD approach. In particular, the invariant prop-
erty of the NC-HMD test is first proved in Section IV.A. Then,
the accurate analytical expression is derived for computing
the false-alarm probability by utilizing the moment-matching
Box’s Chi-square approximation in Section IV.B. Finally, the
theoretical detection probability of the NC-HDM test is deter-
mined by employing the moment-matching Beta approximation
in Section IV.C.

A. Invariant Property

Invariance is an important property for the hypothesis test.
It is easy to verify that the proposed NC-HDM algorithm is
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of the invariant property. In particular, for a group of invariant
transformations:

Z={z2:x—-zx)=Zx,Z=L P, P cD} (16)
where D is a group of diagonal positive-definite matrices of di-
mension M and Z = diag{p1,...,pm,p1,...,par} With p;
being non-zero real-valued number, we easily have

x=17Zx (17)
W =ZWZ". (18)
It follows from (14) that
i
NC—HDM = — = :

ILZ, i ILZ, wi x p?
(19)
= éne-mpM{ W} (20)

which indicates that the NC-HDM test is invariant.

B. False-Alarm Probability

In this subsection, we will derive accurate false-alarm proba-
bility by means of the Box’s approximation [38], [39], enabling
us to determine accurate theoretical decision threshold for the
NC-HDM approach. To this end, we first need to compute the
moments of the test statistic.

Under Hy, it follows from [37] that the PDF of W can be
derived from that of the Wishart distribution, which is given as

W M exp {— R W])
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(23), given at the bottom of the page. Here, w';; is the i-th diag-
onal element of W' which has the same distribution as W but
with DOFs of N + k. On the other hand, note that 2u/;; /7, fol-
lows a Chi-square distribution with DOFs of 2(N + k). Using
the moment expression for Chi-square distribution, we obtain
the (—#%)-th moment of Hgl w'y; as

Substituting (24) into (23) and recalling |R|*/? = [[.2, on,
under Hy, we obtain the k-th moment of éx¢ _ppwm as

—k

M

(I

i=1

B QA/H.",]_-‘ZAI (M) F(N) M
E[&c_npu] = FQM(%)Z [F(N + k)} 7
=01, (25

Having determined the moments of éxc-—pmyv above, we can
utilize the Box’s approximation to derive the false-alarm prob-
ability. To proceed, the following results [38], [39] are needed.
Lemma 1: If a random variable ¢ € [0, 1] has the k-th mo-
ment, expressed as
>k

b Y i
[-1y
Ho*|=Co| S5
1T, =
in which @ and b are integers, > ¢_, 7; = Z;)-:l y; and Cy is
a constant such that F[¢] = 1, then the cumulative distribution
function (CDF) of —2p1n ¢ can be determined as

T T (1 + k) + fi].
TT_.Tli(1 + k) + 7]
k=0,1,...

(26)

W - 21) P{~2plnop <y =P{xi <yl +w[P{x’i ., <
p(W) OM(N—2M-1)T, . (%) |E\% @n =2plnéd <7} {Xf = Z’} [ {be+4 = ’Y}
2 -3 -3
where “P{G <A+ 0@ )+ 0 (570 @D
k=1 =1
2M .
N (90 N-—-i+1
FQN[ (5) — 7_(_]\1(2]”—1)/2 Hl“ (TL—F) . (22) where
. . o , 2 : 1
with ['( - ) being the complete Gamma function. Given the PDF f=-2 Z & — Z n; — 5((1 —b) (28a)
of W in (21), the k-th moment of £x¢—ppMm is computed as i=1 =1
B feko-non] =/ W Ve {—fir[RT W]}
NC-HDM| — TN o AT N N M AL
ﬂ>0 oM(N—2M 1)F2M (7) |E| 5 Hi:lwfi
_ 2Mk|ﬁ|é—‘FQM (A;—k)
Taar (F)
Ntk—1_ a,
W2 Mexp{-ltr[R'W']} .
X / QM (N+E—2M )T/ (M) |R|A~i HM ke
w/>0 4V 2 == =1 23
—k
oMK RIET,,, (Ntk [ M -I
_ |—| QJ\N{( 2 )E H“]/ii (23)
Loar (5) [ Pl J
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1 a ¢ ; 1 2 +l
po1o LS8 £'+6—Z"7 L6 ) (28b)
A\ = j=1 d
a b
1 B(u; i Blv;
w=—= (,LL +2£ ) _ Z (VJ +2nj> (280)
6| = (om) = (y))

with B(¢) = #2 — 1.5¢? + 0.5¢ being the Bernoulli polynomial
with DOFs of 3 and order one, and

(29)
(30)

pi = (1—pz;
vi=(1-p)y;-

We are now at a position to match the %£-th moment of ¢ to that
of énc_ppw forarbitrary & = 0, 1, . .. but within the same sup-
port [0,1]. Recalling that W is non-negative definite, we have
[W| > 0, leading to Exc—mpum > 0. On the other hand, using
the inequality of |[W| < H:il w? in ([40], p. 477), we have
énc_upm < 1. Thus, we obtain fNCTHDM € [0, 1] It follows
from (25) that the k-th moment of £X _py € [0, 1] is

g e = OMNKL, (N+2Nk) [ (V) ] M

NC—-HDM 1—‘2}\[(%) ]._‘(.ZV‘I— Nli,)
MNk TT2M N (14-k)—i+1
9 MNK ]2 11"(1( ) )

TV L+ R

=C(M,N)

€2))

where O(M, N) = [D(N))M /T D(E=4L) which is in-
dependent of %. By matching the k-th moment of ¢ to that of
X mpas it follows from (26) and (31) that

a=2M (32a)
b=M (32b)
N
T = ) (32¢)
y; =N (32d)
1
b= (32¢)
7 = 0. (329)
Substituting (32) into (28) yields
f=2M? (33a)
1 2M
=1- — 2 — M
P AM2N (21 ) (33)
MB(1-p)N 2 &L [Q-p)N—i+1
= - B .
w 6,2N? 32N ; 5 (33¢)

Setting (X gpy = ¢ and ignoring the terms of O(N —3),
it follows from (27) that the CDF is asymptotically given as

Fe(v)=1-P (X?c < —-2pNln W)
—w [P (X§c+4 < —2pNln 'y) - P (X?: < —=2pNln 7)] . (34

Thus, given a false-alarm probability Py, , the decision threshold
can be obtained by numerically inverting F¢ (). That is,

YNC-HDM = Fg—l(Pfa)- (35)

C. Detection Probability

In Section VI-B, the false-alarm probability is computed
by matching all moments of &3 ppy under Ho, ie.,
E[&X¥E gpml(B = 0,1,...), to those of ¢ whose fluctuation
can be asymptotically determined by the Chi-square distri-
bution. Nevertheless, it is very difficult to determine all the
moments of ényc_ppwm under H;. Indeed, it is shown in [12],
[20], [41], [42] that, by computing the first two moments of the
test statistic and utilizing the moment-matching Beta approx-
imation, the fluctuations of some well known test statistics,
such as the ST, John’s and HDM, can be accurately determined.
This is because these test statistics have the same support as
the Beta distribution, i.e., £ € [0, 1]. Note that {x¢ _mpy under
‘H1 also has the support [0,1]. On the other hand, since two
parameters are sufficient to completely determine the Beta
distribution, only the first two moments of the test statistics are
involved. This motivates us to derive the detection probability
of the NC-HDM approach by matching the first two moments
of éxc_upwu to those of the Beta distribution.

Note that the k-th moment of ényc_gpw under H; has the
same expression as (23). Since only two moments are needed
for the moment-matching Beta approximation, the first two mo-
ments of Hgl w}; will be considered. It follows from (23) that

271\1 R 7%1’\ M N-1
M 2E [Gé—HDM] = B Qy ( ? )7—1
Lonr (5)
(36)
272IM R 711’\ , N-2
M2 E [Gé—HDM] = R ?’VM ( 2 )TZ (37)
Ponr (3)
with
M
n=E|]] w’.ii] (38a)
i=1
M )
L=E|[] w’i] (38b)
i=1

We are now at a position to calculate 7; and 75. In order to
do so, several existing schemes can be applied. One possible
scheme is to adopt the asymptotic non-central Chi-square dis-
tribution of w7, to approximately compute the first two moments
of H?il w'?;, analogous to the approach in [19]. However, such
a scheme cannot provide sufficient accuracy for moment calcu-
lation at small samples because the term O(1/N ) needs to be ig-
nored. This eventually leads to poor approximation for the Beta
distribution. Another possible scheme is to compute the first and
second exact moments by means of the approach provided in
[13]. Nevertheless, recall that w, is the i-th diagonal element of
the WL expression W’ with DOFs of N + k, whose fluctuation
is very difficult to determine. To circumvent this problem, sim-
ilar to [43], we transform W' into a real-valued matrix and then
determine its fluctuation. In particular, for the complex-valued
observation X = Xp + ¢Xy in which xp and x; are the real and
imaginary parts of x, respectively, its corresponding real-valued
observation is X = [x &, x| " with the SCM of

G = XXT — (GRR GRI)

39
Grr Gor (39)
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where X = [%1,..., ,Xn]. As a result, the WL expression can
also be given by

W' =Ggr+ G +1(Grp — Ggr). (40)
This implies that 7; and 75 can be determined by using the
real-valued covariance matrix G.

Proposition 1: For any number of antennas M and number
of samples V, 7; and 75 defined in (38) are computed as

11 1 p(™
1 -
=3 > Va2 [ [T +2m-1)
£1=06=0  £3;=0 nESy |m=1
P ™
1) &7 |ALL|
x [ —= (41)
( 2 H 67r - Oy D..—0
1 1 1 p("")
=D > Z o > | [V +2m)
£1=0£2=0  f32,=0 TESo s | m=1
(x) p(m)
1\ 4 9| Ay
x (——) _O'|Aau (42)
2 - Om1 Oy |, —0

where Sj; consists of all the partitions of the M-ele-
ment set {#;,....t,, | with the number of partitions
being the Bell number [44] and the index satisfying
im = m A+ Ly, M(im =1,..., M), S is composed by all the
partitions of the 2M -element set {¢;,,...,t;,,,  with index
satisfying =1+ /1M jo =1+ ﬁziw, 13 =24+ /3M, Ja =
24 0M, ... jopi—1 = M+ boap M, jour = M + o M.
Moreover, « in (41) denotes a partition of {#,,,....#;,, } which
is defined as a family of nonempty, pairwise disjoint subsets
of {tiy,..., tiy } whose union is {#;,, ..., tiy 1, p™ is the
number of subsets in m, w,, is the m-th subset of @, j is the
number of elements in «,, and m,,; is the j-th entry of x,,.
These definitions are also applicable to (42). Furthermore,

|Acc| - |IJW - Z2Dcc2cc‘ (43)
|Aonr| = [Topar — 12Dopr X (44)
where DCC = (11(1(9;( IEEEEE ’lw) DQ_A[ = (].lag(f]_7 PN 7t21w)./

¥ = E[xx"] and X, is the submatrix of ¥ with index ¢ =
{i1,...,4p}. Additionally, the partial derivatives of |A..| and
|A| with respect to 7,,,; are provided in (62) and (68), respec-
tively.
Proof: The proof is provided in Appendix A. ]
Let G¢(y) be the CDF of énc—ppy under Hy, which is de-
termined as follows. For any numbers of antennas and samples,
i.e., M and N, the moment-matching Beta approximation to the
CDF of fNC—HDM under Hl is

B, (a,0
6) ~ )y e @)
where
3
B, §) = FF—((ZE(/@)) (46)

IFor more details about the partition of a finite nonempty set, the interested
reader is referred to [44].
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B,(a, ) = /,, 247N — 2)P (47)
20

are the complete and incomplete Beta functions, respectively,

and
2M_ _
o= (Ml — M- -|-1> (Ml — M 2) (48a)
M_4

My
4= (48b)

- M_1)(1 - ).
Thus, it follows from (15) that the detection probability is
computed as

Pa(y) 2 Prob(¢ < y[Hy) =

G(v)- (49)

Given a false-alarm level £%,, the theoretical decision threshold
is determined by (35). On the other hand, with the so-obtained
threshold, the corresponding detection probability is computed
by (49). The mapping between the false-alarm probability and
detection probability yields the ROC. Hence, the analytical
ROC formula for the NC-HDM test is attained as
Py = GFHP)). (50)
Remark: Tt is worth pointing out that the number of parti-
tions of the M -element set {¢;,,....%,, } is the Bell number
[44], which considerably increases as M becomes large. As a
result, the calculation of the detection probability in (49) is quite
computationally intensive particularly when M is large. How-
ever, as pointed out in [13], the number of antennas in the SU
is typically small in practice, say, M varies from 2 up to 8 due
to physical constraints of the device size. On the other hand, re-
call that the theoretical detection probability is only used to pre-
dict the behavior of the NC-HDM test provided that R or X are
given. Note that the relationship between R and X is same as
that between W' and G in (39) and (40). That is to say, the the-
oretical detection probability is not used for spectrum sensing
and thereby can be computed off-line. Hence, the analytical ex-
pression for the detection probability is tractable in the practical
spectrum sensing situations.

V. NUMERICAL RESULTS

Simulation results are presented to validate the analytical
computations of the false-alarm and detection probabilities,
and then illustrate the superiority of the devised NC-HDM
approach over the state-of-the-art detection algorithms.

A. Accuracy of Theoretical False-Alarm and Detection
Probabilities

The approximate analytical formulae for the false-alarm
probability and detection probability are numerically evalu-
ated in this subsection. For the purpose of comparison, the
empirical false-alarm and detection probabilities determined
by 10° Monte Carlo simulation trials are presented as well.
In the simulation results, we use “analytical” to stand for the
derived analytical false-alarm probability and the “simulation”
to represent the empirical false-alarm probability. We first study
the accuracy of the approximate false-alarm probability. Fig. 1
plots the false-alarm probability versus decision threshold for
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Fig. 1. False-alarm probability versus threshold for various parameter settings. (a) M = 3, N = [20, 40, 60] and IID noise. (b) M = 4, N = [20, 40, 60] and
IID noise. (¢) M = 4, N = [30, 50, 70] and non-IID noise. (d) M = 5, N = [30. 50, 70] and non-IID noise.

various parameter settings. It is seen in Fig. 1 that the asymp-
totic approximate false-alarm probability is very accurate in
terms of fitting the empirical curves. Analogous to [12], [13],
to quantitatively demonstrate the accuracy, we employ the
Cramér-von Mises criterion [41] to calculate the errors of the
derived asymptotic approximation with respect to the exact
distribution obtained from the simulations. That is,

2

| =

J
Error = Z ’F(yL) — Fly) (51)
i=1

N

.

where [F'(y;) is the false-alarm probability determined by
simulation, ¥’ (y;) is its estimate obtained by our derived ap-
proximate formula and J = 10% within the support [c1, ¢s]
with ¢1,¢2 € [0,1] and ¢; < ¢o. The errors between the
analytical and simulated false-alarm probabilities are equal to
[0.20,0.044,0.01] x 10~? in Fig. 1(a), [0.94, 0.09,0.02] x 105
in Fig. 1(b), [0.14,0.06,0.039] x 10~° in Fig. 1(c) and
[0.37,0.18,0.05] x 10~° in Fig. 1(d). In a word, the error is

around 10~° for N = 20 and becomes much smaller than 10~?
when the number of samples is larger than 60 no matter the
noise is IID or non-IID.

Let us now examine the accuracy of the detection probability
for the proposed Beta approximation. The simulation results
for the analytical and simulated detection probabilities are de-
picted in Fig. 2 for various parameter settings. More specifi-
cally, we consider the situation of M = 3, N = [40, 80, 160],
SNR = 0 dB for a single primary signal in Rayleigh fading
channel in Fig. 2(a), the condition of M = 3, N = [40, 80, 160)],
SNR = [-0.8,-3.5,—5.2] dB for three primary signals in
Rayleigh fading channel in Fig. 2(b), the scenario of M = 4,
N = [40,80,160], SNR = [-0.8,-3.5,—5.2] dB for three
primary signals in Rayleigh fading channel in Fig. 2(c), and the
case of M = 5, N = [40,120,200], SNR = [-1.3 — 4.2] dB
for two primary signals in Rayleigh fading channel in Fig. 2(d).
In the meanwhile, the IID and non-IID noises are considered
as well. In the Rayleigh fading channel, the entries of H =
[hi,...,h,] are independently drawn from a standard complex
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Fig. 2. Detection probability versus threshold for various parameter settings. (a) M = 3, N = [40, 80, 160], SNR = 0 dB and IID noise. (b) M = 3,
N = [40,80,160], SNR = [-0.8, —3.5, —5.2] dB and non-IID noise. (¢) M = 4. N = [40, 80,160]. SXR = [-0.8, —3.5, —5.2] dB and non-IID noise.
(d) M =5, N = [40,120, 200], SNR = [-1.3, —4.2] dB and non-IID noise.

Gaussian distribution, which are fixed during the sensing pe-
riod but change cross Monte Carlo runs. Without loss of gen-
erality, the channel is normalized as h; = h;/||h;||, the noise
variance is set to one for IID noise and the averaged noise vari-
ance is set to one for non-IID noise. In the sequel, the popula-
tion covariance matrix under H; isR = I; + 2?21 oy, h;hH
for IID noise and R = diag(op,,...,0n,,) + > i, 0u,h;hH
for non-1ID noise. The SNR corresponding to the ¢-th signal
is defined as SNR; = 10log;q o, . For the NC primary sig-
nals, their noncircularity phases {¢; }7_, are drawn from a uni-
form distribution within [—7, 7) and their noncircularity rates
are equal to one, i.e., 51 = -+ = K, = 1. This situation cor-
responds to the BPSK or offset QPSK modulated signals [45],
[46]. As a result, the true complementary covariance matrix is
R = 3¢ SNR;e**h,hy.

It is seen in Fig. 2 that the proposed Beta approxima-
tion is vary accurate in terms of fitting the simulated
detection probability. In particular, the errors between

the analytical and simulated detection probabilities are
[1.45,1.04,0.67) x 10~5 in Fig. 2(a), [0.99.0.63,0.49] x 105
in Fig. 2(b), [0.48,0.43,0.31] x 10~ in Fig. 2(c) and
[0.24,0.21,0.19] x 107° in Fig. 2(d). Note that the errors
are still computed by (51) where F(y;) and F(y;) are replaced
by G(y;) and G (yi), which stand for the simulated and analyt-
ical detection probabilities, respectively. Thus, the derived Beta
approximation is able to provide sufficiently precise prediction
for the detection probability of the NC-HDM approach under
IID and non-1ID noises.

B. Detection Performance

In this subsection, we evaluate the robustness as well as accu-
racy of the NC-HDM detection algorithm for complex-valued
noncircular primary signals by comparing its empirical ROCs
with those of the state-of-the-art methods. In particular, the de-
cision threshold is varied to calculate the false-alarm probability
and its corresponding detection probability, leading to the ROC
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curve. For the purpose of comparison, the numerical results of
the HDM, AGM, John’s, SLE as well as ED algorithms are pro-
vided. As the true noise variance is unknown a priori to the re-
ceiver in practice, the ED approach is used herein as the bench-
mark. In addition, the Rayleigh fading channel model addressed
above is employed. All the numerical results are obtained from
10° Monte Carlo trials.

The ROCs of the NC-HDM, HDM, AGM, John’s, SLE and
ED algorithms in Rayleigh fading channel are demonstrated in
Fig. 3, where the number of antennas equals 3, the number of
samples is 30 and the SNR equals 4 dB for a single primary
signal. It is indicated in Fig. 3(a) that, for the situation of a single
primary signal and small sample size, the NC-HDM approach
is superior to the AGM and HDM methods but inferior to the
SLE and John’s detectors. This is because the SLE approach
uses the a priori knowledge of the primary signal number, i.e.,
¢ = 1, while the other algorithms do not utilize this information.
Moreover, recall that John’s method is known to be the locally
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Fig. 4. ROCs of various detectors in Rayleigh fading channel. AMf = 3, N =
30, ¢ = 2 and SNR = [4, 3] dB. (a) IID noise. (b) Non-IID noises with powers
[1.6.0.9, —2.5] dB.

most powerful invariant test for sphericity. It is superior to the
other schemes for small samples and single primary signal but
not robust against the non-IID noise, as verified in Fig. 3(b).
Instead, the NC-HDM approach significantly outperforms the
other algorithms except the ED method, particularly for non-I1ID
noise. Recall that the HDM algorithm is well known to be robust
against the non-IID noise but fails to employ the property of the
NC signals for spectrum sensing. This is why it is inferior to the
NC-HDM approach.

The simulation results for two primary signals with powers
[4,3] dB are plotted in Fig. 4 in which the other parameters are
the same as those in Fig. 3. It is observed that the NC-HDM
algorithm is considerably superior to the SLE, AGM, HDM
and John’s in terms of detection probability since it is able to
efficiently utilize the NC property of the primary signals and
considers the non-uniform noise powers. For the scenario of a
single primary signal and large sample size, the numerical re-
sults are plotted in Fig. 5. It is seen that the NC-HDM detector
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surpasses the SLE approach and ever is comparable with the ED
scheme in detection performance for IID noise. Furthermore,
the NC-HDM approach is capable of offering the best detec-
tion performance among all the studied schemes for non-IID
noises, as illustrated in Fig. 5(b). The similar results are ob-
served in Fig. 6, where the numbers of antennas is 4, the number
of samples is 100, the number of primary signals equals 2 and
the SNRs are set as [—1, —2] dB. It is seen that although the ED
approach is able to provide the optimal detection performance
for IID noise, its detection performance considerably degrades
for non-IID noise. This in turn means that the ED scheme is not
robust against the non-IID noise. On the contrary, the NC-HDM
test is robust against the non-1ID noise because its derivation has
removed the difference among the noise variances. On the other
hand, the NC-HDM algorithm is able to employ the whole sta-
tistical property of the NC primary signals, namely, the usual
covariance matrix and complementary covariance matrix, for
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spectrum sensing while other approaches ignore the comple-
mentary covariance matrix. Hence, the NC-HDM approach sur-
passes the state-of-the-art methods in terms of accuracy and/or
robustness.

VI. CONCLUSION

By means of exploiting the NC property of the primary sig-
nals and considering the non-uniform noise, a robust and ac-
curate variant of the HDM test has been devised in this paper.
Moreover, utilizing the asymptotic Box’s approximation, the
theoretical false-alarm probability has been derived, enabling
us to accurately and analytically calculate the theoretical deci-
sion threshold for the proposed NC-HDM method in practical
spectrum sensing. Furthermore, employing the asymptotic Beta
approximation, we produce accurate and analytical formula for
the detection probability of the NC-HDM approach. Extensive
simulation results demonstrate the superiority of the NC-HDM
algorithm and agree well with our theoretical computations.
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APPENDIX A
PROOF OF PROPOSITION 1

It follows from (39) and (40) that the diagonal elements of
W ie., w};,in (38) can be determined by the diagonal elements

of G with DOFs of N + k. That is, w}; = gii + g(i+a)(i+m)
for1l < i < M. As aresult, we obtain

M
7
=1

M
= H(gii + GG M) i+ M))
i=1
11 1
= Z Z Z G146 M) (1+£, M) F(24£2 M)(24-£2 A1) X -
£1=0¢5=0 £pr=0

X G(M+L3s MY(M+E37 M)

11 L
Z Z Z Giyiy " Gipping

£1=0£,=0 €3 =0

with 4, = m + £, M(m = 1,..., M) and [see (53) at the
bottom of the page], with jo,,_1 m + bom A M(m =
1,...,M) and jo, = m + b, M(m = 1,....M). To de-
termine E[Hj‘il wl;], we need to calculate E[g; i, -+ Ginsins)
for ¢, = Oor#4, = 1 withm = 1,..., M. Similarly,
the determination of E [H?ﬁ w'?] amounts to the compu-
tation of E[gj1j1 "'.q:l'zz\/f:iz/\,f} for £,, = 0 orf, = 1 with
m = 1,...,2M. To this end, we need to use the following

results ([39], pp.261).

A

(52)

bl
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where G4 is the M x M matrix consisting of the elements of G
with indices ¢ and d while X is the M x M matrix consisting
of the elements of X with indices ¢ and d. This definition is
valid for other matrices in (54).

As a result, we can determine E[[]7, w/;] by means of the
distribution of G .. It follows from Lemma 2 that G follows
a real Wishart distribution, i.e., G.. ~ Wy (N + k, X..). Ac-
cordingly, it follows from ([47], (5.12)) that the characteristic
function is

N+k

¢(®cc) = |Iﬂ/[ - 21®CCECC|7 2

(55)

where © ... is the matrix argument of the characteristic function.
In order to obtain the characteristic function of the diagonal el-
ements of G.., namely, the collection composed of any M el-
ements of {g11, ..., gnM A1, 14 Ar)(1400)s - - - J(200)(20) }» WE
replace ®.. in (55) with D .. = diag(ti,, ..., t,, ), yielding the
characteristic function (56), shown at the bottom of the page. As
a result, we have

L oMbty .. tiy,)
E[gilil...giMiM] = 717 ot Llaf =
4 51 M D..=0
" N1
_ L oMAL (57)
'I,‘M Otil e atiM D..—0

The partial derivatives of |ACC|’¥ with respect to
tiy, ..., %, are given as

Lemma 2: If G ~ sz\,j(lv + ]ﬁ?_, E) with ¥ = Y N1 ™
E[xx"] £ (04j)2mx2m = 0 and there are collections & |ACC—| S Z H (N+2m-1) |Arr|7N;l o
c={i1,....iar}yd = {irrq1,. ... iopry such thatcN=p and O, -~ 9l;,, resy |m=t N
cUd = {iy,...,iaps}, then we have S
Gcc ch W. N k Ecc Ecd 54 X (l)p Ii_[ 0]|A00| (58)
G Gua| M T Yae Xdd (54) 2 ey OTmy - Oy
M 11 1
2
H“/u‘ = Z Z Z JA+6 MY 1+ M) J(1+€: MY (1+£2 M)
i=1 £ =00=0  f33=0
X (2422 M)(2+83 M) J(2+£4 M)Y(24+-£4M) X -
X g(l‘vf—‘rﬂg;w,lRf)(f\{—k[»_)]w,lj\f).g(M—‘réz;\,fJ\I)(NI-{-(’Q M]LI)
11 1
A
= Z Z Z 95151 Gszmdam (53)
£1=0£2=0 lap =0
_N+k
(/)(th', s 7tiM) = ‘IA/I - 27’Dcczec| 2
_ Ntk
2

1-— 2’Lt7j10'7j17j1
—Z’Lt.,jz Tigiq

.
- ZLt'iM Oiniy
N4k

Al

A

—2’Lt7jl (Tiljz
1-— 2’Lti2 Uiziz

—QZt.IjM Tipgin

=205, Tiing
— 27,7‘,',,',2 0',,',2,,', M

— 2t

ing Tinging

(56)
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where Sy, , p(”), A, Tm; and j are defined in Proposition
1. To illustrate the partition 7, we consider an example of 3-el-
ement set {f1,%2,%3}, which provides five different partitions.
That is,

w = {my,my,wg}my = {ta}wo={ta}, w3 = {t}, 97 =3

509

(61)

H ol |ACC|
Oyt - O,y

nl* D..=0

Therefore, it follows from (52) and (61) that E[Hl L wi;] can
be eventually expressed as (41). On the other hand, the par-
tial derivatives of |A..| with respect to the elements of =, i.e.,

(592) ;. (m =1,..., M), are computed as (62), shown at the bottom
m={m.m}.m = {t},m = {ta,ts}.p™ =2 (59b)  of the page.
= {m, m ), = {1, lx},my = {t3}’p(7’) -9 (59¢) In order to determine E[H ! L ] we need to use the whole
x={my,mo b my = [ty ts), s = {t2}7p(7r) _ (59d) SCM G, whose characteristic functlon is given as
m={m},m = {t1,ta,ts},p™ = 1. (59¢) ©(®) = Ty — 2 (63)
For the last partition in (59¢), we have w11 = {1,m12 = where @ is the matrix argument of the characteristic function.
to, 13 = 3 and 7 = 3. To compute the characteristic functlon of gjrivsv s Gjorrjonss
Noticing that we replace @ in (63) with Dosr = dldg(fl ng), yielding
the characteristic function (64), given at the bottom of the page.
|Ace|lD,.=0 =1 (60)  As a result, we have
92M
and substituting (58) into (57), we have Elgsi Giumin] = 10t - taar)
Gjr51 " Gizm iz M gy, It
? FIE A PPV Do =0
1 ]7(‘"’) 1 P 1 dZZ\/[|A |_ N+2
E[giﬂl”'giMiM] = W Z H(‘N+2m_l) <_§> = 21\/[# (65)
T weSy |m=1 ? Liy - Otay Dy =0
_7’2(7i1i1 _7'2(7i1ig —7,2(”1”1
9|A..| 0 1 e 0
6ti1 til:o . E ’ :
0 0 1
= —ZQO’ilil (623)
—Z2O7L'1i1 —7,20',‘11'2 —7,20',‘11‘3 —ZZOTL‘liM
A2 —7,207521‘1 —7,20',‘21'2 _7'20'1'21'3 e —ZZOTL‘QiM
GAe| _| o 0 1 0
ot; ot | i =0 : ) : . .
i, =0 : :
0 0 0 1
_(_ 2| Tiyiy Tiyiy
= (=2) Tiviy,  Oiyiy
(62b)
OM|A. M
# 20M2,..| (62c)
iy - Obiy|p, —g
o(t1, ... tanr) = Lo,
N4k
1- 21t10’11 —2Zt10’12 —217&10’1(2]\[) 2
—2’Lt20’21 1- 2Zt2022 —217&20’2(2]\[)
—2itapr ooyt — 202002002 —2ut2pr 0 (201 (20)

= |Aans|”

(64)
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Similar to (58), let Saas be composed of all the partitions of
the 20 -element set {¢;, . ..., 1;,,, }2. Meanwhile, note that the
second-order partial derivatives of |Aq,z| with respect to the
same variable ¢;,, are equal to zero. Consequently, the partial

derivatives of |A2M|‘¥ with respect to #;,,...,%;

J2M are
given as
82]\I|A / |_N;2 pt™ ver  om
T g = 2 | TV 2m)| (A
tjl .. th M wESay | m=1
(=) p(r)
1\? | Aapy
x (—7) | e R
2 me—1 d7rm1 o dTrmg
Hence, substituting
|Aon|D, =0 =1 (67)

along with (66) into (65), it follows from (53) that E[H:il w’?i]
can be calculated as (42). Recall that, for £5,,, 1 = o, (0 =
1,...,M),wehavet;, _, =t;, .Insuch a situation, the par-
tial derivatives of |Aajs| are equal to zero. In other words, the
second-order partial derivatives of |Aaps| with respect to the
same variable £; in (66) are zero. On the other hand, for the
scenario where w contains different variables, i.e., ; # 4;(i,j =
1,...,2M), we can utilize the same manipulation as (62) to ob-
tain the partial derivatives of | Ao | with respect to the elements
ofw,ie, t;(i =1,...,2M). That is

J|As;
OAsn]) —12011 (68a)
9t |40
O’ Azn| _(Cap2|om o
Aoty |t1 =0 T oo o2
tQ =0
(68b)
02A1|A2M| )
= = (=2)2M 2501 ]. 68c
Oty - Otaps Dy s =0 ( ) QM‘ (68¢)

This completes the proof of Proposition 1.
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